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Abstract 

The nonunique nature of massive spin-2 fields is explicitly shown in this paper through 
the construction of all possible field equations, using Dirac formalism for spin-~ fields. 
Out of these four possible theories, we point out two that do not show up scalar representa- 
tions. 

1. Introduction 

I have tried elsewhere (Nunes, 1973), to construct a consistent massive spin-2 
field theory, in a V 4 pseudo-Riemannian variety. This theory should represent 
the natural and standard version of a massive spin-2 field theory, previously 
formulated against the background of a Minkowsldan space-time. However, even 
in flat space, there has been an apparent impossibility of  building up a unique 
theory for such a field. In this paper we deliberately pick up Weyl spinors and 
use Dirac formalism, to  make an explicit presentation of the four possible 
theories for massive spin-2 fields. 

The difficulties we face in an Fur-field theory, are twofold: (a) difficulties 
that are a common inheritance to higher spin fields; and (b) difficulties con- 
cerning the Fur field itself, i.e., which are peculiar to it. 

This paper is related to i tem (a), and, therefore, does not go beyond the 
simple assessment of  the plain impossibility of  a unique massive spin-2 field 
theory. 

2. Nonuniqueness o f  the Theory 

An important  aspect of  the theory of  massive spin-2 fields, is the usual under- 
standing that the mathematical entity suitable for describing such a field should 
be a trace-free symmetric second-rank tensor; this fact stems from the reducibility 
of  the tensorial product F v~ = FAv @ F~,, where FAv and FB v are self-representa- 
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tions of the homogeneous Lorentz group. It is well known that korentz groups 
possess tensorial and spinorial irreducible representations; this reality imposes 
a multiple choice of ways of setting up a ma~ive spin-2 theory. As suggested 
by Dirac, if higher spin fields do exist, they could be described by a straight- 
forward generalization of his equation for spin-½ fields, provided they are 
written using Weyl spinors. The fact that elementary particles should correspond 
to the irreducible representations of  the inhomogeneous Lorentz group, is a 
corner-stone in field theory. From a pure group theoretical concept, if nothing 
rules out the existence of higher spin-2 fields, nonetheless, this statement leads 
invariably to a multiple number of theories. 

Let us take Dirac's equation in Weyl spinors form. The spinors ~A ~-A span 
a two-dimensional complex space, homomorphic to the self-representation 
space of the Lorentz group, whose representations are usually given in terms 
of two numbers ] and j '; they identify the dimensionatity of the spinorial 
representation space, whose dimension is (2/+ 1) (2]' + 1) and the product 
entities are now called spinors of order 2] + 2j'. 

(2.1) 

The reason why this couple of numbers are needed lies in the fact that the 
spanning of the representation space is made not only using the two compo- 
nents of the spinor ~A(~I, ~2)but also its complex conjugate ~A(~I, ~2). 

We shall now write down the formal generalization of (2.1): 

. ~ A A ~ A ~ . . , A  n _ K ~ A , A  . . . A n  
~ B ~ z ' " B m  - B ~ " ' B m  (2.2) 

~ ' " B r n  = i ~'"  m 

The fields these equations are meant to describe belong to higher spinorial 
representations of the Lorentz group, built up from the expansion basis (~A, ~4) 
or the set of components (~, v 2, v i, v~). 

0~, = v~~q ~ v2%s' (2.3) 

(these spinor products are made the same way we carry out the tensor product 
of the vectorial representation of Lorentz group). 

Let (r + 1) (r' + 1) be the dimensionality of the representation space. For 
the sake of convenience one usually finds in the literature r and r' expressed 
in the form j = r/2; ]' = r ' /2 so that 2j + 2]' becomes the order of the spinor. 
Let us call the space representation A JJ . In terms of the number of dotted and 
undotted spinors in (2.2) we can express (jj') for ~ and f, respectively: 

" h  = ½ (n + 1);j~ = m/2 

~" ~j~. =,/2;/~.  = ½(m + 1) 
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If l is the higl~est spin found in the representation to which (~, ~') belong, 
we have for each one of  them 

. t  ~-+l=./~ +1~' =½(m + n  + 1) 

~_+ l=]~ ., 1 + l r = ~ ( m + n +  l) 

As we are interested in the case 1 = 
be set up: 

lst: 

2nd: 

L = ½(m + n  + t )  3rd: 

4th: 

2, four possible alternative theories can 

n = 0  
m = 3  
n = l  

m = 2  
n = 2  

m = l  
n = 3  

m = 0  

Let us now calculate the values of  (l, ] ' )  in each case (we number them, 
respectively, la, 2b, 3c, 4d): 

la 
n = 0 / ~ = ½ ( n + l ) ,  ., I = 1 . ,  :~=~m, j~ ~; :~  = 

. f  . I  
m = 3 j~- = ½n, :g- = ½(m + t ), Jr = 0, I t  = 2 

2b 

3c 

. t  
/~ = ½(n + 1)= 1, If  = ½m = 1 

, t  ]} =½n =½, 1~- = ½(m + 1)= ~ 

/~=½(n+l)=~, ./~"-l-,im =I 
.: 

f~- =½n = 1, ]~-=½(m + 1)= 1 

4d 
f~ = ½(n + 1 ) = 2 ,  

j r = ½ .  = ~ = ,  

• t _  l 
If  - ~ m  = 0 

, t  1 
Jr = ~(m + 1) = 

The corresponding representations for these theories are (designating as 
previously, adding a, b, c, d) 

laa A ~ = A 1/2 @ A 3/2 q- A ° @ A 2 = A 1/2+ 3/2 4- A 3/2-1/2 

4-A 2+o = A  t = 2A 2 4-A t 

2bb A t = N  @ A I q-A 1/2 @ A3/2 = A  1+1 -kA 1 + 1 - 1  

4-A 1/2+ 3/2 4-A 3/2-1/2 -hA 1-1 = 2A 2 4-N 4-A ° 

3cc A-'f = j ~ / 2  (~ A1/2 4_A 1 ~ )  a 1 =A3/2+1/2 4A3/2-t/2 4- A 1 + 1  

- ~ a ! - I  4 - a  1 + 1 - 1  = 2A2 -~ 2A 1 + A  0 
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A* = A 2 @ A ° 4 A 3/2 @ A 1/2 = A 2+° 4 A a/2+1/2 
5r A3/2-1/2 + A  3/2+ 1/2 = 2A 2 4 N  

As we have seen, the 1 st and 4th theories do not show up scalar representations; 
this fact has, possibly, something to do with the extra degree of freedom present 
in generalized massive spin-2 field equations, it is an open question. 

We shall, to end up this part, write the Dirac generalized equations for each 
theory: 

I laa 3AB ~ B ~  = ~ ~'/iB, Bj~ 

22bb 3 A B ~  a = K ~ 2 

4 4 d d  OAB~AA1A%~ta = g ~'~ IA~A3 

3AJ3~; ̀ A~Aa = K ~ AA1A~A~ 
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